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Abstract

From a system of Boltzmannlkinetic equations for a gas mixture sub-

jected to photon radiation, we formulate generalized hydrodynamics equations

which include diffusion~T and thermodiffusion phenomena, chemical reactionf and

magnetohydrodynamic proe6sses. The generalized hydrodynamic system is used

in the analysis of upper atmospheric properties.

The book is offered for use by research specialists working in the

field of atmosphere physics and cosmos, by graduate and under-graduate stud-

ents specializing in physics and meteorology.

Foreword

The term "upper layers of the atmosphere" is not a very definite

concept. The lower border of the region is;:idetermined for all practical

purposes by the character of the process analyzed. When the sun radiation

has a direct, immediate effect upon the atmosphere in a given region, in

terms of the processes induced, becomes an upper atmosphere. The readers

are referred to the introduction for the explanation of the last characteris-

tic.

According to the criterion indicated, this book contains the entire



- 2 -

thermosphere and parts of the mesosphere as comprising the upper atmosphere.

An extensive factual material has been collected and numerous theo-

retical assumptions have been developed in regards to the properties of the

atmosphere at high altitudes. At that, the hydrodynamic method of describing

macroprocesses in the atmosphere has been already extended to include the

strato- and mesosphere, making possible the formulation of the meteorology

theory for these regions. We make an attempt, in the present book, to

expand the hydrodynamic description to include the thermosphere.

The upper atmosphere, from the point of view of physics presents a

multicomponent gas system affected by the external radiation flux. The

basic assumption of the theory is the idea that macroscopic properties of

this system are determined by the elementary processes involved, while the

adequate method of investigation is the kinetic equations method; Maxwell

and Boltzman have devised this method in their works. An attempt has been

made in the introduction to demonstrate that the kinetic equations method,

actually, is the most generalized method--if not the unique method--of all

analysis methods accepted at the present for the description of the upper

atmosphere. This statement is in accordance with the strong belief of the

authors and they try to defend it in their book. There appears the possi-

bility of building hydrodynamic equations by this method for the upper

atmosphere and-the securing of a series of physical results without solving

kinetic equations. The present monograph is devoted to this problem.

Mathematical formulae resulting from the theory are unfortunately

too cumbersome and do not possess the desired finesse; this is the conse-

quence of the endeavor to bring the equations to their final results. In

this connection the authors may be treated as being old fashioned but
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their excuse would be in the fact that their book is considered as a work

which pursues primarily practical, not theoretical aims. Yet, it is possible

that a diagram method could have been worked out, analogous to the Feinman

method applied in quantum mechanics.

The book does not exhaust the entire problem, by any means, and is

actually only the first steep in this new area of physics of the upper

atmosphere. The realization of the planned program will require much time

and efforts and the authors will be happy if their work results in interest

in the prboblems described and in the method for their solution as offered

by the authors. Chapters 1 and 4 contain the preliminary material which

should be the base for work in the direction indicated.

Giving a short characteristic of the book content we may state that

chapters 1 and 2 are devoted to'the -method of kinetic equations and the

formulation of generalized equation of hydrodynamics in the upper atmosphere.

Chapter 3 presents the physical effect of the latter. Chapter 4 contains a

summary of data which constitute the experimental basis of the theory.

The authors express their gratitude to the staff members of the

section of physics of the high layers of the atmosphere of the Central

Aerol6gical Observatory; the discussions carried on were extremely useful

in understanding many questions, and also to professor K.S. Shifrin for his

valuable suggestions made at the time the monograph was readied for print.

A. Ivanovskiy
A. Repnev
E. Shvidkovskiy

Central Aerological Observatory

January 1966
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BASIC SYMBOLS

Pressure

pa, p5B - partial pressures of components

p=p' + p,\'

p, mp -,--Iviscous stress tensors

Pjk pjk+ p , PjkP =k P- Tjk PIl P,= p+ 3+

Densities

:Pa, PB --partial densities of components P= Pa + P8

na, ,nl -\ densities of particles number n -n. + na 

Ain ==-= 

n,--
1

density of photon numbers

Velocities

,h l...) \ integrals in relation to moments of the n-order

Ua, uB-\ macroscopic velocities of components

W0 = ke,u+ +

Vo = ,U -- U.

Wo = kua +- kRu;

P' Vo Vo
u' =_ P, pP Vo j

Temperatures

T,, TB -/ components temperature
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m To + mO T

To m .+ m

(mT) = nT + mOT,

k. = |m 57 i= l/m- T

Other characteristics

S=, SP lvectors of components thermal flux

Sa + S± \vector of a full thermal flux

Microscopic characteristics of state

vo-jsingle vector in a given direction

v _/q'andomi single vector

O-, oafi- _-,ross-sections of chemical reactions

'oa, a -- cross-sections of elastic collisions

d--[ diameter of particle

'0l = a (d. + dp)2

dQ -- element of solid angle

mm, mi-4 particzi masses

(m) = ma + mP

2mm
M a. |

m
a
+ m 

fa, fi -- non-equilibrium distribution functions

/oa, 1to -IMaxwell equilibrium distribution functions

Sa, Sai - integrals of elastic impacts

RI, Ra--jintegrals of reactions

Va, v- - I full velocities of alpha and beta particles

a' . -I thermal velocities of alpha and beta particles
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(n)h -| linear combinations vivjtvh-.], determined by formulae (1.5.1.)

-(1.5.4.)

M(n ) - Moment of the:n - order
ijh... 

pa, P0 -- particle alpha and beta pulses

p -- photon pulse

Chemical. components

a, 3, w., x, g gas mixture components

L--lions, e -\electrons

Macroscopic ratios

1 1s1, , 2�,1, 1, - gas misture viscosity ratio

;,a, 1 , 2, ) ,2' - gas mixture heat conductivity, ratio

arT-Ithermal diffusion coefficient

D --diffusion coefficient

Other symbols

c0 -1 light velocity

E--electric field voltage (intensity)

H--!magnetic field intensity

F-Imass external force

e-',electron charge

g -Igravitational acceleration

6jk -ironeker symbol

I--[radiation intensity

* .-Iphoton flux
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Numbering formula and references

The numbering of formulae is independent for each individual para-

graph (1, 2, 3, and so on).

The following rule has been accepted for references to formulae:

1) when the formula is contained in a given paragraph, the refer-

ence is limited to the ordinal number of the formula in the given paragraph,

for instance (14);

2) when the formula is contained in a different paragraph of the

same chapter the reference includes two numbers: first the number of the

paragraph of the chapter then the ordinal number of the formula in the para-

graph indicated, as for instance: (3.18);

3) when the formula is, ontained in la' different chapter.,;l therJ (.

reference contains three numbers: first the number of the chapter, then

the number of the paragraph and, finally the ordinal number of the:;-formula

as it appears in the paragraph, for instance: (2.4.8).

INTRODUCTION

First of all, we should probably give an explanation for the title

of the book. The expression "upper atmosphere" has attained in the last

years in the Russian scientific literature a-well-u.nderstood context and

means the upper atmosphere layers. In this book the lower border of the

upper atmosphere is taken as being situated at the place where the gravi-

tational-diffusive distribution of gases begins to play an important part.

On the other hand it has been proven by means of experiments that contrary

to the properties displayed by lower layers, the characteristics of the

upper atmosphere are, basically etermined by the direct effect of the sun.
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Therefore, the upper atmosphere should be considered as a medium presenting

a non-insulated gas system affected by the external photon and corpuscular

radiation and, on the whole, not in a state of thermodynamic equilibrium.

It seems natural to apply the methods of the kinetic theory of gases

on the Boltzman equation to a theoretical analysis of this type of medium.

It is well known that the basis of kinetic equations and methods of their

solving contain a series of intricate questions, which are not, however,

considered in this book. In other words, this is not a book on the theory

of kinetic equations, but only on the application of this theory to a definite

physical problem. Following this path--we consider the possibility of the

simplest and physically proven method of obtaining certain important con-

clusions on the state of upper atmosphere layers, solving the mechanisms

of elementary processes in reactions taking place in the gas medium as

affected by photon and corpuscular radiation.

The subsequent investigation is therefore based on the Boltzman

equation system for gas mixtures, with collision integrals and reaction

integrals on the right. In order to solve the system the method of moments

is used in a form slightly different from the one used by Grade. Boltzman

equations are treated concretely in reactions about which we may assume

that they play-the main part in the formation of the state of the atmosphere

at high latidues--predominantly in the thermosphere and, partially, in the

mesosphere.

As for Boltzman's equation derivation and the description of its

characteristics the questions may be studied in the books of A. Sommerfeld

"Thermodynamics and Statistical Physics" (Moscow, 1955), S. Chapman, T.

Cowling "Mathematical Theory of Non-homogeneous Gases" (M. 1960). A
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two-component gas is considered in the latter book. General mention on

chemical reactions may be found in the book by Geo. Hirshfeld, Ch. Curtiss

and P. Byrd "Molecular theory of gases and liquids" (M. 1961).

The equations received in the monograph are not solved extensively,

in other words, the computation of non-equilibrium distribution fuctions

in its explicit aspect is not performed, as the problem is reduced to the

construction of generalized hydrodynamics equations for the upper atmos-

phere in the so-called thirteen-moment approximation.

Maxwell already has,.demonstrated the possibility of obtaining a

hydrodynamics system of equations from the kinetic equations of Boltzman

for the simple gas. Further on, the manner of solving of Boltzman equation

by reducing to hydrodynamics equations has been considered in the works

of Gilbert, Enscog and Chapman, Barnett, Grade. The methods they suggested

have their positive and negative sides. These methods constitute a con-

siderable independent chapter in the kinetic gas theory. The most efficient

method for our aims of investigating the properties of the upper atmos-

phere appears to be the method suggested by Grade and which is avriant of

the general method of moments. It is shortly described in paragraph 4 -

chapter 1.

The conventional hydrodynamics are formulated in the approximation

of one gas without considering thec(effects of diffusion and thermal diffusion.

It does not account for chemical transformations of the molecules, dissocia-

tion, recombination, excitation, etc. Yet in the upper atmosphere the lat-

ter processes, as they are induced by solar and cosmic radiation sometimes

determine the properties and the behaviour of gases, while the diffusion

phenomena play definitely a very considerable part. Methods used for the
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analysis of the properties of the upper atmosphere are characterized by a

great variety and dissociation. We seethere photochemistry and hydro-

dynamics the electromagnetic theory, theory of electron and ion collisions,

etc. The absence of one common method results in the fact that even com-

paratively simple processes in the upper atmosphere sometimes can be con-

sidered only qualitatively and separately from other processes. This situ-

ation may easily be proven by using, as an example, the theory on gravita-

tional-diffusive distribution of gases. The theory of this process suggested

by Nicolat is based on formulae obtained for the binary mixture of gases.

Yet, even the area of the atmosphere adjoining 100 km should be considered

as a system consisting of three components and over. In addition, charged

components are present in the upper atmosphere; these components are actually

electrons and ions affected by magnetic and electric fields. The electrons

in the Earth ionosphere have a high capacity for moving and, as shown by

recent investigations, have, in some areas of the ionosphere a higher degree

of temperature than the other components in the atmosphere. Therefore, even

at a small concentration the electrons play an important part in determining

heat conditions in the upper atmosphere. The part played by electrons is

particularly important in heat conductivity along the lines of force of the

earth magnetic field. Therefore, hydrodynamics of the upper atmosphere

must take into account all the above factors listed and should generalize

in this sense.

It is possible, of course, to attempt to formulate the generalized

hydrodynamic equation for the upper atmosphere in a phenomenological manner,

but there is then the possibility of overlooking many important processes

and a great many empirical coefficients will then have to be introduced.
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Therefore, the derivation of generalized hydrodynamical equztions from the

Boltzman equation system, which carries the mechanisms of processes subject

to calculation seems to be the most natural and physically justifiable.

The system of correlated hydrodynamic equations taking into adcount

the basic reactions which take place in the upper atmosphere has the fol-

lowing limitations: it is devised only for mechanisms relating to paired

collisions. However, in spite of the rarefication of the gas forming the

upper atmosphere there is a basis for the assumption that triple collisions

may play a part as well.- From the point of view of a developed theory the

formation of the ozone layer cannot be considered, either (for the same

reasons - the impossibility of taking into account the triple collisions).

The question dealing with the extent of the existing limitation and the

nature of the macroscopic-properties is too complicated and can be fully

clarified only on the basis of data obtained by experiments and observations.

In addition to limitations of the theory from below, there also

exists a limitation depending upon the altitude above, which are dependent

upon defects inherent to tie Grade method. Grade himself gave two,limitations

for the applicability of his method: 1) a change in the flux velocity at

a distance of a median length of a free path should not exceed 20% of the

speed of sound and, 2) the change in absolute temperature of the gas over

this distance should not exceed 20 % of its magnitude. The existing experi-

mental data show that the first condition is always achieved in the atmos-

phere. The second condition can be-recorded at:

5.10 - 3 OT

TPituting the values p known from the CRA

By substituting the values T ddT and p known from the CIRA,T, 

C
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1965 atmosphere mockup, we see that at a 200 km altitude this condition is

dT ·
definitely attained. As the altitude increases the z tends to zero,

as absorbed solar energy, in other words, in proportion to the decrease in

density. The length of the free path grows in inverse proportion to density.

The left part of the above formula tends to a constant limit, considerably

smaller than 0.2. This would provide a basis for the belief that the second

condition of Grade is achieved in the entire atmosphere. At high altitudes

the atmosphere is subjected to considerable 24 hour fluctuations. At those

altitudes where the time between the particles collision may be commensurable

with a 24 hour period the atmosphere may be in the non-equilibrium state.

However, evaluations indicate that this non-equilibrium may originate only

at altitudes considerably exceeding 800 km. Finally, as.we analyze an

open system, obsorbing radiation, we must admit that one more source of

non-equilibrium exists. Detailed evaluations of this non-equilibrium have

been made in paragraph 4 of chapter 3. We demonstrate that kinetic temper-

ature and temperature defining the distribution according to pressure or

density degree differ by 1% in relation to the last value of non-equilibrium

at altitudes exceeding 400 to 500 km. Thus, the method used by us may be

applied, without involving great errors in an altitude range of 100 to 500

km, as a minimum.

When formulating the system of generalized hydrodynamic equations

the authors did not introduce the distribution function along the internal

levels of particle freedom, as this fact did not affect the form of the

equations obtained. If one and the same particle may be located at dif-

ferent levels of excitation of the internal levels of freedom this fact

may be considered as a sufficient indication of their being isolated into
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into individual components in the mixture. For all practical purposes,

only two states were distinguished: the basic and the excitation state.

However, this consideration of the component does not agree with the con-

ventional understanding and, in addition, in a subsequent consideration of

all excitation levels the number of components to be analyzed may increase

to infinity. Therefore, a distribution fuction for internal levels of

freedom has been introduced (paragraph 4, chapter 2). At that, we obtain

cpv ( +2) ,I where i is the total number of freedom levels instead of
cU

the 5/3 which should appear from the previous manner of consideration.

Simultaneously, there is a relaxation form in the energy exchange between

the internal and the progressive freedom levels.

Many important physical consequences may be obtained when using

hydrodynamic equations even when they are not subsequently solved. The

book deals extensively with these consequences and it appears that they

open anentire series of new situations relating to the understanding of

processes taking place in the upper stmosphere and to conditions of formations

of its state depending upon the affect of radiation.

In order to establish fields of thermodynamic parameters and velocities

of macroscopic motions using the soluti6ns of hydrodynamic equations it

is necessary to formulate the border and initial conditions --which is a

question presenting an independent problem in itself, but, in addition we

should also know the cross-section of reactions. In spite of the extensive

material of experimental and theoretical investigations collected on the

last problem, it appears that it is still insufficient for a complete under-

standing of the planned program and that a considerable amount of work has

to be performed in this direction. At that, it is very important to have
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a very distinct concept of the level and volume of information relating to

the cross-sections of basic reactions. These data which will serve as

basic material for the continued investigationsin be direction planned are

listed in the last chapter.

The schematic method of the theory reported above permits to deter-

mine concrete problems on the computation of individual mockups of thermo-

and mesospheres and prepares the way for the problem of forecasting on the

state of these areas in connection with solar activity and certain other

factors. The other possibility consists in he investigation of connections

existing between various stratified layers of the atmosphere.'
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BOLTZMAN"S KINETIC EQUATIONS SYSTEM AND GRADE"S METHOD OF SOLUTION

1. General aspect of the kinetic equations system of Boltzman for a

composite gas compound in the presence of reactions

We shall start with the basic distribution function f (r,wv, t) I of

dynamic states of one particle in a six-dimensional phase space of the x.
1

coordinates and vdi velocities (1, 2, 3). The x. and v<i magnitudes are

components of the r vector which determines the location of the particle

and the vector va which determines its velocity at a time moment t.

In a non-equilibrium gas mixture made up of n components, when the

interactions between the particles are limitedd: to paired collisions which

do not result in a transformation of their nature the change f is described

by the system of Boltzman's kinetic equations

Df eV gsI, B

where the summing up is distributed over all n components of the gas mixture

and the operator

D= - +-v,,-ax + mM. ov,' (2)

while the force F with components FCi affecting the particle is a function

of the point and the time.

The collision integral in the right part (1)

Sms e SSias IVpa * a(ffo-ff) d yndvi (3)

may be considered as an operator transforming the dynamic state of the parti-

cles due to the occurring paired collisions. The shaded and unshaded pro-

duct of distribution functions have a meaning determined by the formulae:
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ff =f (r, f (r, v, ), ! (5)
tfj f . (r, V,, t) f (r, vp, t), (5)

while the connection between the shaded and unshaded velocities is given by

the formula:

(6)

V = v- (VP .) 9, (

where

V5=~ VP-Va I (8)

is the relative velocity of particles. The collision integral S.Aincludes

the difference in operators containing products f'/' and fa/fn,; the first

and second correspond respectively to the transformation of dynamic states

leading to an increase and decrease in the number of particles in time in

a state determined by the volume element drdv near the point (r, v) of the

phase space; v is the unit vector of the normal to the effective differen-

tial cross-section of the collision oca\ in the element of the solid dQ,I

angle O ' coinciding with the line of center of the colliding particles,

is the collision angle between v and the direction of the incident

particle,

dQ = sin a dU d p,

(9)

wherew --\is the aximuth (O aqp ~ 2n)/

Function fz is rated for a mass density pa, in such a way that

S fa dv, = p./ (10)

In the simplest case of the one-component gas we should rate n = 1

in the above formulae. The system (1) then will become a single integro-

differential equation of Boltzman for a single distribution function.
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In a gas system affected by external effects many various reactions

may take place, those inherent to the system itself at a given thermodynamic

state as well as those excited by external agents, for instance, by photon

or corpuscular flux. Such reactions are either positive or negative sources

of a modified function f depending upon the fact whether they lead to the

appearance or disappearance of the alpha particles.

The Boltzman equations system, which takes into account the reactions

could formally be expressed in the following form:

a ~sii+Z R:+~ R~j (11)Df.= B S+ v RI + VRa" l1

where R~/ and Rig--fare operators of separate processes of the (R)\ which

cause the appearance of (R) \ and,the disappearance of (R ) of alpha

particles in the phase volume drdv near the point (r, V¥. >

In recording the concrete expressions for R/ and hRlas a symbol

of the process we shall write the symbol of the initial products of the i\

reaction.

Let us remark, at this point that the form in which the Boltzman's

equation system is recorded (11) is based on the assumption that the

reactions are independent. In fact, only with this assumption the right

parts of the equations may be presented as a sum of operators of individual

processes.

Expressions R" . and R
/
\ will be in the future called the reaction

integrals.

The value of the distribution functions is taken in point (r, v, t)

everywhere and the (drdv) is the phase space element considered. However,

in the future, for the sake of abbreviation, we shall delete the variables

t and r in functional recordings and in recording 'points aand elements of
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the phase space while concentrating our attention on the velocity space.

2. Mono-molecular and bi-molecular reactions

Inasmuch as the gas density in the upper atmosphere is sufficiently

low the processes occurring within, can, basically, be regarded as mono-

and bi-molecular.

1. Mono-molecular reaction

The monomolecular reaction of the dissociation of one particle into two

. - .. ,. P a+ 
i

(1)

is described by the relations

dN,4 N -
dt -- ,. (1)

dN dN AN,'
dt dt '

(2)

where,' /f Nt, Na, No - are the corresponding numerical ansities of

particles and r is the life time 6f a dissociating particle not dependent

upon its velocity. This conformity to the principle is justifiable for those

particles which possess around point (ve. ) a velocity contained in the

phase volume element dv,. 

Then, taking into account the rate fixing (1.10), we will probably

have I =
-- ·(VP·) / ' (3)

--which is a general expression for the operator of the dissociation of the

:/ particle into two.

The decay of the t*,j particles leads to the appearance of alpha

particles in such a manner that the velocity of their origination, according

to (2) must be proportionate with the number of those L*/ particles which
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possess dynamic states, situated in such a volume element dv',, i that after

decay the alpha particles acquire the velocity contained in dvva. \ j

The connection between the pulses of the particles formed and the

pulse of the initial particle is given by the law of pulse and energy

conservation.

If we are to consider the ,*Iparticle pulse as given, then, out of

the four conservation laws we must determine six unknown pulse components of

the alpha and beta particles, consequently the pulse components of the latter

will depend upon the pulse of the initial particle and two parameters.;i

It is a known fact that the unit fector k can be determined in a

one-digit manner by two angles ( foand pV ) which can be considered as

being just such two parameters, in other words, record to functional con-

nections

v.= Y,(v,,., k) (4)

v = Y2 (v,*, k),

(5)

where the form of functions Y1 and Y2 is determined by the energy and pulse

conservation laws. Each direction of the vector k ( e, ) can have the

dQ
probability 4 added to its value and then, on the basis of the above

consideration we shall obtain the expression for operators of the origina-

tion of alpha and beta particles.

R>*=1 4z: i />*(v>, kids, |(6).

Ra*= i ( k)d2. (&7)

When the particle decays into two equal particles, then as can be-

seen from (4) and (5): the v', function will be two-digital, which will be

in full agreement with the existence of the last two operators.
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2. Bimolecular reactions

As a result of the bimolecular reaction two colliding particles form

a new system of one or several particles. For the reaction in the form

a+ ¢x+ (1n)

dN= -_ro I Vi. I NN, . (8)
dt

=d x = | Via. | ~NfNB .i (9)

where oGais the differential section of the reaction (is opposed to the

elastic crossj-section of collision Gacthis magnitude is marked with a dash

over the section symbol). In the simplest case, where the cross-section of

collision is expressed by a continuous function of any parameter (for ins-

tance, temperature), the cross-section of the reaction may be presented in

the form of the?'lproduct of the collision cross-section and the probability

of the onset of the c.\reaction in the presence of collision.

At this point i e cross-section of the elastic collision would be

equal to the product of the collision cross-section with 1 minus the proba-

bility bility of the reaction. However, the correctness of this assumption

must be specifically investigated in each individual case, and, in addition,

we shall see processes farther below, for which the considered suggestion

is at the very least doubtful. In view of this, we introduce, from the

very start, various symbols to indicate the cross-sections of elastic colli-

sions and of the reaction cross-section, considering the first as being in-

dependent from the second.

Taking into consideration (8) and (9) and keeping in mind that the

distribution functions are rated according to density, in analogy with (1.3)

it is possible to write an equation for function f
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dvm DfV, m ml YJfaf'd(2dv'dv;, (10) 

where the integration is assumed to be effected along dQdv;.|

The shaded relative velocity

V =v- v' ( 11) i

in accordance with formulae (1.6) and 1.7) means such a-value at which, the

particle X, receives, as a result of the reaction of the value of the velo-

city around ;v. I

Inasmuch as

dvdv' = (v. v) dv. dv, (12)

the integral of the onset of the reaction of the particle takes the form:

'in V;. f a fdQ | fv--' '2 dvC ( 13)

The connection between v'¢, v' ,v
x

and vX is given by formulae(A,8)

in the )x? addendum, therefore the sub-integral expression is a function

vX\ and V,.j

The remaining integrals of the reaction (II) have the form

R.' -- , ~,7 ~IVo. j v I f.f d).dvp, (14)

Rnn -- IV;. ~ vfaffd. .16 )
Ra Q -M. r latvM3a *fO (fvd"v dv ., (15)

p m SG1 I V P. Q|f Q f F d 9 dv.. (16) !
a ff
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Paragraph 3. Integrals of reactions for some individual concrete
processes

The upper atmosphere presents a complex photochemical laboratory

where a multitude of reactions take place. Using, subsequently, the equa-

tions system (1.11) in the upper atmosphere analysis, we shall limit our-

selves to those reactions of which we know that they *play an important

part.

These are, in the first place, the reactions of photodissociation of

molecules and the recombination of atoms, photo-ionization and recombination

of electrons and ions, of excitation and spontaneous radiation, of attenua-

tion of the excitation during collisions and certain other 1phenomena.

These reactions are, of course, insufficient for the description of all

properties of the atmosphere, but it can be hoped that they will serve as

a certain physical model of interaction of the solar radiation and the Earth

atmosphere, in the first approximation which actually determines the basic

properties of the upper atmosphere.

Let us now consider certain concrete reactions and record their in-

tegrals.

(1) Collisions of particles with ,'different masses (3)

The collision of particles with different masses may be considered

as a bimolecular reaction

·a+ p Ad + p. (I1) \a

Its particular feature is in the fact that the reaction integrals

can be united into one member IB + SpoS I VP m V I (fa; - f pj dQ X

Xdv . (1)

SI has the same form but the alpha and beta symbols exchange their places.

The connection between the particle velocities before and after the collision
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is give by formulae (A.11) in the addendum A.

2) Reaction of particles excited by a photon (3)

This reaction belongs in the bimolecular reactions group although itt-h

is somewhat extraordinary. The reaction formula has the form:

1 + ~ ~ ~,*. (IV) 

Due to the participation of photons in the reaction it is expedient

to consider the process in the pulse phase space P(px, Py' Pz) instead of in

the phase space of velocities.

A reaction is achieved only in the cse when the molecule excitation

level corresponds to the sum of the photon energy and the kinetic energy of

the molecile in their inertia center system.

The reaction integrals have the form

RI' ? =E-i CoS I fcf=YfdQdp?, (2)Ss? CjsICoCOS oI ff, dQdp,

Oily 8(pr, dpc.cos l >fdQ , ( )dpy- (3)

Inasmuch as the photons do not possess a rest mass their pulse dis-

tribution functions are rated for the numerical density of photons. The re-

lative velocity of a photon and a molecule equals the speed of light co

( -is the angle formed by the direction v and the direction of the photon

flight.

Let us explain the last equation. we have

dp,.Df* = [Sj' lcCoC OS f f[dQ dpy]dp;, (4)

dpj, _ (p,)
yet dp d(P;j a P; =P;-+r [I opMyJa (A. 12)p (formula (A.12)

of addendum A). Wherefrom:

dp, 
dpl,.

©
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3) Reaction of a spontaneous radiation of an excited particle (3)

The reaction formula

tL* 11tL + cp. (V)Ii , ,, +

The reaction of spontaneous radiation belongs., to the monomolecular

reactions group in the same manner as -the reaction of dissociation of an

activated molecule (integrals of reaction (2.3), (2.6), (2.7),

The integrals of this reaction are in the form

(6). 
RA*ff,; /- .(p,.)dg (6)

R4 /r ' (P;*) d"- (7) 

The connection between the pulses of particles ,H./and '* is demonstrated in

formulae (A.13) of the addendum A.

4) The reaction of excitation damping in collisions with a non-excited
particle (3)

This is a bimolecular reaction which we shall record as follows:

LI
*

+ "- -I1 + 2' (VI)

On the basis of paragraph 2 it is easy to obtain the expressions of

the reaction integrals

R' =- I V'* 1 . I f f lf dfQ dv>.*, (8)

|I Rt m =--SS bj VpLp '* 9 f f * dQ dv,, (9)

o1,.,. =, l i ,ia^*v fpl · ds*, ; dv> Oa(v",, V>) (10)

RAYS I oqfap,|,,*I~a..tp..wI/t~f,,.$d~d (V;, VI")
1~~~~~ in V0~~~~~~~,,
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We notice that actually particles itand 12i{do not differ from mu and

the corresponding members may be associated. The particle pulses before and

after the reaction are connected by formulae (A.14) in addendum A.

5. Reaction of photodissociation (photoionization) (3)

The reaxtion expression

11 + S9 b x + B ~ ,(VII)

(a, 1i- are symbols of atoms which originated as a result of the diss6cia-

tion.

The integrals of the reaction will be recorded in the form of

Al% = - SS oI cocos 01/ fp d2dp,, (12)

10 ZF = m A ?l co, I s aO l /Iffs dQ dpp d t , P; ) (13)

, 0(p' p (14)

We have analogous expressions for the ions (L)/ and the electrons

(e)lwhere the symbols land eJare situated in the place of alpha and beta,

respectively. The connection between the pulses of the particles before

and after the reaction is expressed in formulae (A.18) and (A.19) of

addendum A.

6) Reaction of recombination with photon radiation (3)

The reaction formula is

a_ d-P l q- + . (VIII)

The integrals of the reactions for the recombination of atoms have

the following expression

i - -V ; ii O v, I /fJ (iflp, (15)

"Raw = m --fSS I V V '. ~lf fp dQdpa, (16)as r
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m SS·81·; · . , If~f f dL dpg') (P 
f * fdp ((Pa Pi) (17)

Analogous expressions have been obtained for ions and electrons,- with

however, the difference that in the latter case the symbols Hland ?\will

replace the alpha and beta symbols respectively.

The particle pulses before and after the reactions are connected by

the expressions (A.22) and (A.23) of addendum A.

Paragraph 4. Grade method of solution of a kinetic equation

Grade used the momentum method to solve the kinetic equation for a one-

component gas; to this end he applied the Ermit polynomial expansion of the

distribution function which can be expressed by the local Maxwell distri-

bution function.

(1) In order to find the expansion factor for a non-equilibrium

distribution function it is necessary to solve, without successive approxi-

mations the final system for hydrodynamics equations whose number is de-

termined by the number of physical characteristics necessary for the des-

cription of the system. The presentation of the Grade method will be re-

ported, following, ).;:basically, in the main features, Sommerfeld's (2).

Boltzman equation for a one-component gas is easily obtained from

the system (1.1). In fact, we should establish that n = 1 in this case

and the system then becomes one equation in which the symbol beta repre-

sents molecules of the same single component alpha. Therefore, we may

omit the symbols alpha and beta in the kinetic equation and write

Df = S (1)

By deleting, for the same reasons the symbols y, m. and V for the

collision integral we obtain:
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S= m --- * Yvl(f' f'w-f)dQdv", (2)

where n1 f[dv -| is the number of molecules in the dynamic state around

point .v .

- Grade searched a solution for equ. (1) in the form of the distribu-

tion of function expansion with the generalized Ermit polynoms;

f o ! b ...H (3)
n=O

wnere

H d e2 ' - 2 (4)
,H(*j · · e Occcd ( CjaC

-polynom in the three-dimensional space of componehts of the "reduced" velo-

city c = v, = (5)

u' and T' are the parameters, k - is the Boltzman's constant and, finally

fo== (9m )3/2e 2 (6)

- is the solution of the equation (1) in a zero approximation, in other words,

the local Maxwell distribution function containing p'JI T' and u' as para-

meters.

The Pi', T' and u' magnitudes should be determined by means of charac-

teristics of the gas state.

These characteristics are the density P,\the pressupre p and the gas

velocity u, which are determine~d by means of the non-equilibrium distribu-

tion function f: p=S fdv,

pu= S vf dv,

P S (v - u)2 fdv.3
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In order to connect the parameters of the Maxwell distribution func-

tion with the characteristics of the state Grade established the following

conditions: P = fo dv, (7)

u = vfo dv, (8)

·pS (vj u) 2. fOdv, (9)

pkT (10)

After computations, we find -that

P = P,
U' = U,

T'=- pm kp

This selection of parameters of the local distribution function -

as we shall see below - brings about certain limitations to factors b(i) and

biij '

Let us remark that this selection of parameters is not the only pos-

sible one.

The expression (4) for the Ermit polynoms, may, evidently, be also

presented in he form:

Hi.) .. = I Ofo
ijnk ... f Ojci cjCCkt... (11)

The expansion (3) upon transition to physical components of heat

velocity is then

E=v--u

and introduction of new factors\ a(n) ..,)

mula

(12)

connected with he previous for-

,)
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i2(Jn aT = n)
biPjnk (13)

may be written in the form

n=O

From the start we may establish that . a(°)=-p. The expansion (14)

then, starts with the Maxwell function of equilibrium gas.

Let us introduce the moment concept . The moment of the n order is

the magnitude

M jk ... = 5 (vvk ... ) f dv. (15) |

The first moments have a aefinite physical sense (value)

M( ) = S f dv = p, (16)

MI' = vif dv=pu,, (17)

l ?' = fv. dv = I(v - U)+2 (v - u) + u2} f dv.
(18)

Using (9),(16) and (17) we obtain

MI?) = 3p + pU2. (19)

In the general form the moment of the second order can be written

as

MI4!) = v ijf dv = + (ui i ) ( f+ )d

-= Puiu± + S Ejf Ad. (20)

Let us present

Then M2)= PiUj+ PZ3 (21)

Tensor P = P, - Ps8,, (22)
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as we shall see later is the tensor of viscous tensions.

It is clear from (9) that

Pii O. (23)

The third-order moment M(3) we shall report in the form

Mik = v ijkf dv S (uli + ') (Ij + )i (u + ) fd =

=pUiL*,jut +- tuPPj +- P, -1- itPj1- S iritkf d-. (24)

The last integral shall be designated as Sot \ It is a tensor of
the third rank which characterizes heat transfer in the gs.

We establish a connection between the factors a()k.. \. in the distri-

bution function expansion (14) and the moments determined above.

We analyze the first order moment

Mv= vifdv= (ui + )(fo +I!p d, +

man a2 fo

p : ai -)'
(25) 

Before we compute the presented integral we sould prove the auxiliary

theorem: integral,

I=S(4isif) ° d dt =O,

when 1 is larger even by one unit than the number of the co-factors

in the parenthesis N.

In fact ' I = rdE.drn (C.~ .. d a' dl-fo

Let us take this integral and analyze it N times by

I==ES d%,d%2 (--l)k .d±,: i... ' -.oE' -r X diOm d.n d'

) ON I(_i_ . -NfoN l.. t-- A ' d '

N I-N

parts-. We ob-

I
tain
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All members of the sum become zero, as.i.=+ oo fo0 becomes a zero together

with all its derivatives. The last integral will-also become zero if 1 N, for

the same reason. Utilizing this theorem, we write (25) as

=J U j f , I + I !p taf )

The first integral, according to (16) = pu.. Let us compute the second in-

tegral 5i(.fo + a'(,' ) d-- d5, d52 a,. -p-- i dfo=

-- v. ,°in 
"

3
-

f d ' ,ai
We obtain finally

- M 4(lpui -al)

yet, according to,.(17) /M(i) =Pu/ It follows from this that i =O(26)

Let us consider-the moment of the second order

ai() = vijf dv (ui + ) (uj + j) X

X (f0o+ 2!p a .n-" d ).
Here, the condition (26) has been utilized. By applying the theorem,

proven above (9) and (16), we obtain
(2) 02!

i ( pUui + P Ji + 0 2!p , d.

Let us compute the last integral:

r Zj d 2 f 0 a) rd!fZf:o a
J i.J 2! p 0.,om dE -, J fo d° 

but

'e= d (-5dln T J+9i )) °jn °im + ajm.in i

It follows from that | MI] = puiu, - P',ij + aU' I

By comparing the expression with (21) we obtain

af2) Pi (27) 

For the third order moment we have

ij- ()( d-)-

X o - omd,,a - 6p os,, 0%o~a ..;· a~ t
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More cumbersome computations analogous to the above result in

Mijk = PUiUjuk + UiPjk + Ujpik + UPij - aijk

Comparing this expression with (24) we obtain

U.k - Sijk. (28) 1 ,

Thus we have established I a(0 ) -p -

'a=O, (29)
(2) =

; (3) _S
I auk - ---Sujk././

Inasmuch as the physical sense of the moments is unveiled by utilizing

conditions (7) - (10) which determine the selection of parameters of the local

distribution function, the selection of these conditions also involves cer-

tain limitations on factors a( iand' the trace of tensor P:[j In particular,

the Grade sioheme carries ai O\equal to 0 and P equals zero.u

Now expansion (14) for f may be re-written in the form of

Pij d2 fo Sijk d3 fo ... (30) 
' f = fo + 2p ddi 6p o:ij (30)k l

In the future we shall need the value of the integral

fk + p_ 02fo Smnk a3fo di.
Mijkl -Jt~jtkt1 {fo+ 2p dOE d;- 6p at, Od, dek

(31)
-The third member in parenthesis transforms the correspd,,ding integral

into zero in view of the odd value of the sub-integral function. The second

integral, when analyzedby parts is transformed into

Pmn2p jr k 

while the further computations will bring it to the following form:

i[ itj jpk +* 4tkPjl + tP-jk + + jkPil + Ek l Pikl X

X fo d P {pk=ti I Pj Pitj Pijkil + Pit jk + Pinkjl + "

+ Pijutdi..
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In the first integral, in the product 'iajkll at least two in-

dexes coincide. Let us assume that l=i., This integral then equals

1 Sdl, d
2

j it tAf
0

d = 2 dc, a
2
{ i d |-d! dla' d; [2i dk -]-

The first member in parenthesis produces zero due to the odd value

6f the function [i jkfod2 ,| the second is reduced to the form

kT ,,
P m (°iOl-jk + ikrjl + 8kBij); /

Therefore, in the final resultwe have

(4) kT( kT
-jkl p G ?Pm°.il.jk + ik°jl + okij) +rn -(Pkij + Pjlik + -

+ Pjkzil + Pil-jk + Pikojl +- PtAil). (32)]

I

o


